Journal publications

Year: 2023, 2022, 2021,2020,2019,2018,2017,2016,2015,2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001

Conference proceedings

MSc & PhD theses

2023

The upgrade of the ASACUSA scintillating bar detector for antiproton annihilation measurements
G. Costantini et al. (ASACUSA Collaboration)
JINST 2023 18  P04013

Upgrade of ASACUSA’s Antihydrogen Detector
V. Kraxberger et al. (ASACUSA Collaboration)
Nucl. Instr. and Meth. in Phys. Res. A 1045 (2023) 167568

2022

Reducing the background temperature for cyclotron cooling in a cryogenic Penning-Malmberg trap
C. Amsler et al. (ASACUSA Collaboration) 

Physics of Plasmas 29 (2022) 08330

Hyperfine Spectroscopy of Antihydrogen, Hydrogen and Deuterium
E. Widmann
Physics of Particles and Nuclei 53 (2022) 790

Large nuclear scattering effects in antiproton transmission through polymer and metal-coated foils
K. Nordlund, M. Hori, D. Sundholm
Phys. Rev. A 106 (2022) 012803

High-resolution laser resonances of antiprotonic helium in superfluid 4He
Anna Sótér, Hossein Aghai-Khozani, Dániel Barna, Andreas Dax, Luca Venturelli & Masaki Hori
Nature 603, 411 (2022)

2021

Antimatter cooled by laser light
Masaki Hori
Nature  592, 27 (2021)

Limits on antiproton-nuclei annihilation cross sections at ~125 keV
H. Aghai-Khozani et al.
Nucl. Phys. A 1009 (2021) 122170

Measurement of the Principal Quantum Number Distribution in a Beam of Antihydrogen Atoms
B. Kolbinger et al. (ASACUSA Collaboration)
Eur. Phys. J. D75 (2021) 91

Induced THz transitions in Rydberg caesium atoms for application in antihydrogen experiments
M. Vieille-Grosjean,  E. Dimova, Z. Mazzotta,  D. Comparat, T. Wolz & C. Malbrunot
Eur. Phys. J. D 75, 27 (2021)

2020

Laser spectroscopy of pionic helium atoms
M. Hori, H. Aghai-Khozani, Anna Sótér, A. Dax and D. Barna
Nature 581, 37 (2020)

High precision molecular measurement
M. Hori
Science 369, 1160 (2020)

Stimulated decay and formation of antihydrogen atoms
T. Wolz, C. Malbrunot, M. Vieille-Grosjean & D. Comparat
Phys. Rev. A 101 (2020) 043412

2019

Antiproton beams with low energy spread for antihydrogen production
M. Tajima et al. (ASACUSA Collaboration)
J. of Instrumentation 14 (2019) P05009

A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer
C. Malbrunot et al. (ASACUSA Collaboration)
Nucl. Instrum. and Meth. in Phys. Research 935 (2019) 110

Lead fluoride Cherenkov detector read out by avalanche photodiodes for measuring
the intensities of pulsed antiproton beams

Y. Murakami, H. Aghai-Khozani, M. Hori
Nuclear Instruments and Methods in Physics Research A 933, 75 (2019)

Laser-stimulated deexcitation of Rydberg antihydrogen atoms
D. Comparat and C. Malbrunot
Phys. Rev. A 99 (2019) 013418
Erratum: Laser-stimulated deexcitation of Rydberg antihydrogen atoms
Phys. Rev. A 101 (2020) 019904

2018

Monte-carlo based performance assessment of asacusa’s antihydrogen detector.
Y. Nagata, et al.,
Nucl. Instrum Meth, A 910: 90

The ASACUSA antihydrogen and hydrogen program: results and prospects
C. Malbrunot, et. al. (ASACUSA Collaboration)
Phil. Trans. R. Soc. A 376: 20170273

Imaging antimatter with a Micromegas detector
V. Mäckel et al.,
Nucl. Instrum. Meth. B422 (2018) 1-6

Measurement of the antiproton-nucleus annihilation cross-section at low energy
H. Aghai-Khozani et al.,
Nucl. Phys. A 970, 366 (2018)

Physics News in 2017: buffer gas cooling of antiprotonic helium and the
antiproton-to-electron mass ratio
M. Hori (in Japanese)
Parity 33, 15 (2018)

2017

Efficient antihydrogen detection in antimatter physics by deep learning
P. Sadowski et al.,
J. Phys. Commun. 1(2) 025001 (2017)
( https://doi.org/10.1088/2399-6528/aa83fa )

In-beam measurement of the hydrogen hyperfine splitting - towards antihydrogen spectroscopy
M. Diermaier et al.,
Nat. Commun. 8, 15749 (2017)
https://www.nature.com/articles/ncomms15749

2016

Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio
M. Hori et al.,
Science 354, 610 (2016)
(http://science.sciencemag.org/content/354/6312/610)

Direct detection of antihydrogen atoms using a BGO crystal
Y. Nagata et al.,
Nuclear Instruments and Methods in Physics Research A 840, 153 (2016)
(http://dx.doi.org/10.1016/j.nima.2016.10.019)

Instrumentation for measurement of in-flight annihilations of 130 keV antiprotons
on thin target foils
K. Todoroki et al.,
Nuclear Instruments and Methods in Physics Research A 835, 110 (2016)
(http://dx.doi.org/10.1016/j.nima.2016.08.026)

Annihilation detector for an in-beam spectroscopy apparatus to measure the
ground state hyperfine splitting of antihydrogen
C. Sauerzopf et al.,
Nuclear Instruments and Methods in Physics Research A (2016)
(http://dx.doi.org/10.1016/j.nima.2016.06.023)

Antihydrogen level population evolution: impact of positron plasma length
B. Radics and Y. Yamazaki,
Journal of Physics B 49, 064007 (2016)
(http://dx.doi.org/10.1088/0953-4075/49/6/064007)

2015

The ASACUSA micromegas tracker: a cylindrical, bulk micromegas detector for antimatter research
B. Radics et al.,
Rev. Sci. Instrum. 86, 083304 (2015)
(http://dx.doi.org/10.1063/1.4927685)

Towards a precise measurement of the antihydrogen ground state hyperfine
splitting in a beam: the case of in-flight radiative decays

R. Lundmark et al.,
J. Phys. B 48, 184001 (2015)
(http://dx.doi.org/10.1088/0953-4075/48/18/184001)

2014

Scaling behavior of the ground-state antihydrogen yield as a function of positron
density and temperature from classical-trajectory Monte Carlo simulations

B. Radics et al.,
Phys. Rev. A 90, 032704 (2014)
(http://dx.doi.org/10.1103/PhysRevA.90.032704)

Segmented scintillation detectors with silicon photomultiplier readout
for measuring antiproton annihilations

A. Soter, K. Todoroki, T. Kobayashi, D. Barna, D. Horvath, M. Hori
Rev. Sci. Instrum. 85, 023302 (2014)
(http://dx.doi.org/10.1063/1.4863648)

A novel property of anti-Helmholz coils for in-coil syntheses of antihydrogen atoms:
formation of a focused spin-polarized beam

Y. Nagata and Y. Yamazaki,
New J. Phys. 16, 083026 (2014)
(http://dx.doi.org/10.1088/1367-2630/16/8/083026)

First Observation of a (1,0) Mode Frequency Shift of an Electron Plasma
at Antiproton Beam Injection

N. Kuroda et al.,
Phys. Rev. Lett. 113, 025001 (2014)
(http://dx.doi.org/10.1103/PhysRevLett.113.025001)

A source of antihydrogen for in-flight hyperfine spectroscopy
N. Kuroda et al.,
Nature Communications 5, 3089 (2014)
https://www.nature.com/articles/ncomms4089

Proposed method for laser spectroscopy of pionic helium atoms
to determine the charged-pion mass

M. Hori, A. Soter, V.I. Korobov
Phys. Rev. A 89, 042515 (2014)
(http://dx.doi.org/10.1103/PhysRevA.89.042515)

2013

Observation of the 1154.9 nm transition of antiprotonic helium
T. Kobayashi et al.,
Journal of Physics B 46, 245004 (2013)
(http://dx.doi.org/10.1088/0953-4075/46/24/245004)

Microwave spectroscopic study of the hyperfine structure of antiprotonic 3He
S. Friedreich et al.,
Journal of Physics B 46, 125003 (2013)
(http://dx.doi.org/10.1088/0953-4075/46/12/125003)

Experimental apparatus for annihilation cross-section measurements
of low energy antiprotons
M. Corradini et al.,
Nuclear Instruments and Methods in Physics Research A 711, 12 (2013)
(http://dx.doi.org/10.1016/j.nima.2013.01.015)

Physics at CERN's Antiproton Decelerator (review article)
M. Hori, J. Walz
Progress in Particle and Nuclear Physics (2013)
(http://dx.doi.org/10.1016/j.ppnp.2013.02.004)

2012

First experimental detection of antiproton in-flight annihilation on nuclei at 130 keV
H. Aghai-Khozani et al.,
Euro. Phys. J. Plus 127, 125 (2012)
(http://dx.doi.org/10.1140/epjp/i2012-12125-8)

Development of a monoenergetic ultraslow antiproton beam source
for high-precision investigation
N.Kuroda et al.,
Phys. Rev. ST Accel. Beams 15, 024702 (2012)
(http://dx.doi.org/10.1103/PhysRevSTAB.15.024702)

2011

Measurement of the antiproton-nucleus annihilation cross-section at 5.3 MeV
A.Bianconi et al.,
Physics Letters B 704 (2011), pp. 461-466
(http://dx.doi.org/10.1016/j.physletb.2011.09.069)

Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio
M. Hori et al.,
Nature 475 (2011), pp. 484–488
(http://dx.doi.org/10.1038/nature10260)

Current status of antiproton impact ionization of atoms and molecules:
theoretical and experimental perspectives
T. Kirchner and H. Knudsen
J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 122001
(http://dx.doi.org/10.1088/0953-4075/44/12/122001)

First observation of two hyperfine transitions in antiprotonic 3He
S. Friedreich et al.,
Physics Letters B 700 (2011), pp. 1-6
(http://dx.doi.org/10.1016/j.physletb.2011.04.029)

2010

Synthesis of cold antihydrogen in a cusp trap
Y. Enomoto et al.,
Phys. Rev. Lett. 105, 243401 (2010)
(http://link.aps.org/doi/10.1103/PhysRevLett.105.243401)

Calculation of transition probabilities and ac Stark shifts in two-photon
laser transitions of antiprotonic helium
M. Hori and V.I. Korobov,
Phys. Rev. A 81, 062508 (2010)
(http://link.aps.org/doi/10.1103/PhysRevA.81.062508)

Target structure induced suppression of the ionization cross section for
very low energy antiproton-hydrogen collisions
H. Kundsen et al.,
Phys. Rev. Lett. 105, 213201 (2010)
(http://link.aps.org/doi/10.1103/PhysRevLett.105.213201)

Taming GeV Photons & Antimatter - Formation Length-Related
Bremsstrahlung Effects & Controlling Slow Positrons

Heine Dølrath Thomsen
(Dissertation for the degree of Doctor of Philosophy, Aarhus University, Denmark, 2010)
(pdf)

2009

Chirp-corrected, nanosecond Ti:sapphire laser with 6 MHz linewidth
for spectroscopy of antiprotonic helium

M. Hori and A. Dax,
Optics Letters, Vol 34, p. 1273 (2009).
(http://dx.doi.org/10.1364/OL.34.001273)

Antiproton magnetic moment determined from the HFS of pbar-He+
T. Pask et al.,
Phys. Lett. B 678, 55-59 (2009)
(http://dx.doi.org/10.1016/j.physletb.2009.05.038)

2008

Ionization of helium and argon by very slow antiproton impact
H. Knudsen et al.,
Phys. Rev. Lett., Vol 101, p. 043201 (2008).
(http://link.aps.org/doi/10.1103/PhysRevLett.101.043201)

Antiproton and proton energy loss straggling at keV energies by
S.P. Møller et al.,
EPJ D 46 89-92 (2008)
(http://dx.doi.org/10.1140/epjd/e2007-00314-3)

Radial compression of an antiproton cloud for production of intense antiproton beams
N. Kuroda et al.,
Phys. Rev. Lett., Vol 100, p. 203402 (2008).
(http://link.aps.org/doi/10.1103/PhysRevLett.100.203402)

Improved study of the antiprotonic helium hyperfine structure
T. Pask et al.,
J. Phys. B, Vol 41, p. 081008 (2008).
(http://dx.doi.org/10.1088/0953-4075/41/8/081008)

Spatial and temporal beam profile monitor with nanosecond resolution
for CERN's Linac4 and Superconducting Proton Linac

M. Hori and K. Hanke,
Nucl. Inst. Meth. Phys. Res. A 588, 359 (2008).
(http://dx.doi.org/10.1016/j.nima.2008.01.078)

2007

Antiprotonic helium and CPT invariance (A comprehensive review on antiprotonic helium)
R.S. Hayano et al.,
Reports on Progress in Physics, Vol 70, p. 1995 (2007)
(http://dx.doi.org/10.1088/0034-4885/70/12/R01)

Determining the antiproton magnetic moment from measurements of the
hyperfine structure of antiprotonic helium

D. Bakalov and E. Widmann,
Phys. Rev. A 76, 012512 (2007)
(http://link.aps.org/doi/10.1103/PhysRevA.76.012512)

2006

Low temperature behavior of collisions between antiprotonic helium and hydrogen
molecules and an indication of the Wigner threshold law

B. Juhasz et al., available online in
Chem. Phy. Lett. 427, 246 (2006).
(http://dx.doi.org/10.1016/j.cplett.2006.06.079)

Determination of the Antiproton-to-Electron Mass Ratio by Precision Laser Spectroscopy of Pbar-He+ by
M. Hori et al.,
Phys. Rev. Lett. 96, 243401 (2006).
(http://link.aps.org/doi/10.1103/PhysRevLett.96.243401)

2005

Photocathode microwire monitor for nondestructive and highly sensitive spatial profile
measurements of ultraviolet, x-ray, and charged particle beams

M. Hori,
Rev. Sci. Instr. 76, 113303 (2005).
(http://dx.doi.org/10.1063/1.2130931)

Observation of Cold, Long-lived Antiprotonic Helium Ions
M. Hori et al,
Phys. Rev. Lett. 94, 063401 (2005).
(http://link.aps.org/doi/10.1103/PhysRevLett.94.063401)

Confinement of a large number of antiprotons and production of an ultraslow antiproton beam
N. Kuroda et al.,
Phys. Rev. Lett. 94, 023401 (2005).
(http://link.aps.org/doi/10.1103/PhysRevLett.94.023401)

2004

Cryogenic tunable microwave cavity at 13 GHz for hyperfine spectroscopy of antiprotonic helium
J. Sakaguchi et al,
Nucl. Instr. Meth. A 533 (2004) 598
(http://dx.doi.org/10.1016/j.nima.2004.06.144)

Populations and lifetimes in the v = n-l-1 = 2 and 3 metastable cascades of He+
measured by pulsed and continuous antiproton beams

M. Hori et al.,
Phys. Rev. A 70, 012504 (2004)
(http://link.aps.org/doi/10.1103/PhysRevA.70.012504)

Systematic study of the decay rates of antiprotonic helium states
H. Yamaguchi et al.,
Phys. Rev. A 70, 012501 (2004)
(http://link.aps.org/doi/10.1103/PhysRevA.70.012501)

Precision measurements on the properties of antiprotons
M. Hori
Physics Reports 403-404, 337-347 (2004)
(http://dx.doi.org/10.1016/j.physrep.2004.09.002)

Stopping power in insulators and metals without charge exchange
S.P. Møller et al.,
Phys. Rev. Lett. 93 (2004) 042502
(http://link.aps.org/doi/10.1103/PhysRevLett.93.042502)

ASACUSA enters a new world of precision- a feature article of
Hori et al., written by John Eades, in
CERN Courier Vol 44
article

ASACUSA probes the astrophysical 'ice age'- a feature article of Juhasz et al. in
CERN Courier Vol 44
article

Parallel plate chambers for monitoring the profiles of high-intensity pulsed antiproton beams
M. Hori,
NIM A 522 (2004) 420.
(http://dx.doi.org/10.1016/j.nima.2003.11.200)

2003

Antiproton mass measured to 10 parts per billion by ASACUSA
Phys.Rev. Lett. 91, 123401 (2003) is in Particle Data Book PDG2004.

Resolution-enhancement of pbar-helium atomic line profiles measured using
a pulsed dye laser and Fizeau wavelength meter

M. Hori et al.,
Optics Letters 28 (2003) 2479.
(http://dex.doi.org/10.1364/OL.28.002479)

Direct measurement of transition frequencies in isolated pbar-He+ atoms,
and new CPT violation limits on the antiproton charge and mass

M. Hori et al.,
Phys. Rev. Lett. 91 (2003) 123401
(http://link.aps.org/doi/10.1103/PhysRevLett.91.123401)

Quantum tunnelling effects revealed in collisions of antiprotonic helium
with hydrogenic molecules at low temperatures

B. Juhasz et al.,
Chem. Phys. Lett. 379 (2003) 91-98
(http://dx.doi.org/10.1016/j.cplett.2003.08.041)

Transport beam line for ultraslow monoenergetic antiprotons
K. Yoshiki Franzen et al.,
Rev. Sci. Instr. 75 (2003) 3305-3311
(http://dx.doi.org/10.1063/1.1578160)

Analog Cherenkov detectors used in laser spectroscopy experiment on antiprotonic helium
M. Hori et al.,
NIM-A496 (2003) 102-122.
(http://dx.doi.org/10.1016/S0168-9002(02)01618-2)

2002

An apparatus to measure stopping powers for low-energy protons and antiprotons
Anderson et al.,
Nucl. Instr. and Methods B194 (2002) 217-225
(http://dx.doi.org/10.1016/S0168-583X(02)00692-4)

Hyperfine Structure of Antiprotonic Helium Revealed by a Laser-microwave-laser resonance method
E. Widmann et al.,
Phys. Rev. Lett. 89 (2002) 243402
(http://link.aps.org/doi/10.1103/PhysRevLett.89.243402)

Anomalies in the decay rates of antiprotonic helium atom states
H. Yamaguchi et al.,
Phys. Rev. A 66 (2002) 022504
(http://link.aps.org/doi/10.1103/PhysRevA.66.022504)

Primary populations of metastable antiprotonic 4He and 3He atoms
M. Hori et al.,
Phys. Rev. Lett. 89 (2002) 093401
(http://link.aps.org/doi/10.1103/PhysRevLett.89.093401)

Antiprotonic helium
T. Yamazaki, N. Morita, R.S. Hayano, E. Widmann, J. Eades
Physics Reports, 366, 183-329 (2002)
(http://dx.doi.org/10.1016/S0370-1573(01)00082-5)

Antiproton Stopping at Low Energies: Confirmation of Velocity-Proportional Stopping Power
S.P. Møller et al.,
Physical Review Letters 88 (2002) 193201
(http://link.aps.org/doi/10.1103/PhysRevLett.88.193201)

Quenching of metastable antiprotonic helium atoms in collisions with deuterium molecules
B. Juhasz et al.,
Eur. Phys. J. D 18, 261-266 (2002)
(http://dx.doi.org/10.1140/epjd/e20020046)

Experimental Investigations of the Energy Loss of Slow Protons and Antiprotons in Matter
Alex Csete (master thesis, Aarhus University)

Weighing the antiproton an exciting story about ASACUSA by John Eades in the October issue of CERN Courier

2001

Antiproton mass measured by ASACUSA
(Phys. Rev. Lett. 87, 093401 (2001)) is in Particle Data Book PDG2002.

The FIRST Physical Review Letters from Antiproton Decelerator
Sub-ppm laser spectroscopy of antiprotonic helium and a CPT-violation
limit on the antiprotonic charge and mass

M. Hori et al,
Phys. Rev. Lett. 87, 093401 (2001)
(http://link.aps.org/doi/10.1103/PhysRevLett.87.093401